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A Modified Lanczos Algorithm for the Computation
of Transient Electromagnetic Wavefields

Rob F. Remis and Peter M. van den Berg

Abstract—A new method for computing transient electromag- strength. One of the characteristics of the method is that it is
netic wavefields in inhomogeneous and lossy media is presentednot an explicit time-stepping method.
The method utilizes a modified Lanczos scheme, where a so- The present method of this paper differs from the approach

called reduced model is constructed. A discretization of the f Druski d Knizh in the followi ts. Eirstl
time variable is then superfluous. This reduced model represents oF Druskin and Knizhnerman in the following respects. Firstly,

the transient electromagnetic wavefield on a certain bounded We are dealing with the wave (hyperbolic-type) equations
interval in time. Some theoretical aspects of the method are rather than the diffusive (parabolic-type) equations. Secondly,

highlighted and numerical results showing the performance of we consider Maxwell's equations as a system of first-order
the method for two-dimensional (2-D) configurations are given. a4 ia) differential equations rather than two separate equations
Also, comparisons between this Lanczos method and the finite- e .
difference time-domain (FDTD) method are made. _of second orde_,-r. In our method, a modlf_led Lanpzos algorithm

is developed in such a way that the time variable does not
need to be discretized, i.e., our method is not an explicit time-
stepping method. Some special properties of the method are
analyzed theoretically and also an error analysis is presented,
|. INTRODUCTION from which the number of Lanczos iterations required within

STANDARD method for computing transient electro® finite_ time interval_of observation folloyvs. For co_nvenie_nce,
A magnetic wavefields is the finite-difference time_domaiﬂumencal_resuIFs will be shown for v_arlous two-dimensional
(FDTD) method [1]. In this method, Maxwell’'s equationéz'D) conflgurauons only and comparisons betwee.n the results
are discretized in space and time, employing central finigbtained via the FDTD method and our method will be made.
differences for the derivatives with respect to the space and
time variables. A disadvantage of the FDTD method is that IIl. BASIC EQUATIONS
the time step is limited by the Courant-Friedrichs—Lewy To specify position in a domain in which an inhomogeneous,
stability condition [1]. Another disadvantage is the fact thatnisotropic, and lossy medium is present, we employ the vector
if one is interested in the frequency response from the time-with Cartesian coordinates;, x», andzs. Further,d;, ds,
domain results, the time step must be chosen very smalhdd; denote differentiation with respect 6, z», andzs,
hence, increasing the computational work that is involvedespectively, whiled, denotes differentiation with respect to
In case one is dealing with diffusive electromagnetic fieldde time coordinate.

(neglecting the displacement currents), explicit time-steppingThe point-wise behavior of the electromagnetic field is
methods are even more time consuming, since for these fieldsscribed by Maxwell’s equations written here in the form

the Courant—Friedrichs—Lewy stability condition puts stricter ,

limitation on the time step cv;)r/]1pared 2/0 the wavefliaeld case. To (D+ My + Ma0)F = Q @)
be more precise, ihz denotes the minimum spatial incremenwhere D is a symmetric spatial differential operator matrix
and if At denotes the time step, then the number of time stegiven by
to get a solution at timeis proportional tat/ Az for wavefield

Index Terms—Lanczos algorithm, reduced models, transient
electromagnetic wavefields.

0 0 0 0 93 =0

problems and/(Az)? for diffusion problems. 0 0 0 —0s 0 a,

Recently, Druskin and Knizhnerman [2] have presented a 0 0 0 9y -0, 0
much more efficient approach for computing transient dif- D= 0 —05 O 0 0 0 (2)

fusive electromagnetic fields in inhomogeneous media using 95 0 -0, 0 0 0

the method of Lanczos—the spectral Lanczos decomposition —5y, 0 0 0 0

method (SLDM). Their approach is based on a second-order

differential equation for either the electric- or magnetic-fielanOI j[he tme-mdependent matriced, and M, are medium
matrices given by
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and function is continuous and is, at most, of exponential growth,
€11 €19 .3 O 0 0 ast — oo and that equality in the definition of the Laplace
€01 €29 €23 0 0 0 transform (12) is invoked at the real set of poirdts, =
€51 €39 €33 0 0 0 so +nh;n = 0,1,2,---,}, where sq is sufficiently large
My = 0 0 0 pi1 g2 pus | 4) and positive andh is positive.

Subsequently, we discretize in space using standard spatial
finite differences [5] with a Dirichlet boundary condition. We
do not discuss here the errors made in the spatial discretization
Using energy considerations it can be shown that the pegfor a discussion on this see [6]). Further, the impact of using
mittivity matrix e;, ; = &, (=) and the permeability matrix ghsorbing-boundary conditions is not studied in this paper.
pi,j = pa,j(z) are symmetric and positive definite. Than our test problems, we take the boundary of the domain
conductivity matrixo; ; = oy, ;(z) is positive semidefinite of computation sufficiently far so that no reflections due to
and is taken to be symmetric. Hence, the medium matix  this boundary are observed in the points of observation. The
is symmetric and positive semidefinite and the medium matrifscrete counterparts @b, My, M, F, and Q are given by

My is symmetric and positive definite. Further, the field vectan a7, af,, F, andQ, respectively, and satisfy the algebraic
F = F(x, t) consists of the components of the electric-fielghatrix equation

strengthE and the components of the magnetic-field strength .
H and is given by (D4 My + sM2)F(s) = w(s)Q (13)

0 0 0 po,1 p2,2 p23
0 0 0 ps,1 p32 p3,3

F =[E1, By, E3, Hy, Hy, H3]" (5) with s € RT. The matricesD, M;, and M, are all square
N x N matrices. Matrix D is real and skew-symmetric,
the matricesM; and A, are both symmetric,Af; being
semipositive definite andy/; being positive definite. The
discrete counterpart of matri&— is also denoted by—. In

while the source vecto®’ = Q'(x, t) is composed of the
components of the external electric-current souwféend the
components of the external magnetic-current sout€e

Q =-J5, J5, JS, KS, K5, Kg]T_ (6) the discrete version, the relations
We also introduce the signature matfix as D6~ =-6D (14)
5~ =diag (1,1, 1, -1, =1, 1) 7) My~ =67My (15)
and
and we observe that the signature matfix anticommutes My~ =6~ M, (16)

with matrix D, i.e.,
- - hold as well. We note that the chosen discretization of finite
D6 =-6D 8 . . ) o
differences in space is not a restriction to our approach of the

and that it commutes with the medium matricet, and M,, problem. One can choose any spatial discretization as long as
ie., (14)—(16) are satisfied.
Finally, (13) is rewritten as

M6~ =6 My () 5
and F(s) =w(s)M; ' (A+sE)™'Q 17)
M26™ =67 M. (10) with s € R*. Here, E is the identity matrix and matrix
Let the source vector be of the for@ (z, ¢) = w(t)Q(x), '° defined as
wherew(¢) is the source wavelet that vanishes fox 0 and A=(D+M)M;" (18)

Q is a time-independent vector. Then, because of causality,

the field vector” must vanish everywhere far < 0. Now |t is noted that for some particular value gfthe solution of
take the one-sided Laplace transform of (1) with respect {97) can be obtained with e.g., a conjugate-gradient iterative
time. The resulting matrix equation is then given by scheme for nonsymmetric matrices [7]. However, since we are
- N interested in many values ef(or in the complete time-domain
D = 11 .
(Dt My sM2)F(z, 5) = i(s) Q) (11) result) we would like to keep as a free parameter. Then, a
with Re(s) > 0. To show the notation employed, the expred-anczos type of algorithm is necessary.

<

sion for F(z, s) is given by
o A. Time-Domain Result
F(z, 3):/ exp (—st)F(z, 1) dt. (12)  via inspection, the unique and causal time-domain
t=0 -1 . .
counterpart of the vectofA + sE)~'Q, is obtained as

In our further analysis, the Laplace-transform-parametey x(t) exp (—At)Q, where x(t) denotes the Heaviside unit

taken to be real and positive. Then, Lerch’s theorem (Sgfp function. The time-domain counterpart of the vector
Widder [3] or Henrici [4]) ensures that there is a one-tof'(5) then follows as

one correspondence between a causal time function and its
Laplace-transform-domain counterpart, provided that the time F(t) = w(t) * x(H) M5+ exp (—AH)Q (19)
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where x denotes convolution in time. Computing the vector [ " f

exp (—At)Q by using any decomposition of matrid, in- Trﬂ
dependent of, is not feasible due to the large size of this
matrix. The order of matrixd ranges fromV = O(10°) for A Vo | = | Vi +
2-D problems toN = O(107) for three-dimensional (3-D)
problems. For example, in a 3-D configuration there are six
equations describing the behavior of the electromagnetic field
(Maxwell's equations written out in components). Using 209, 1 A oict ¢ (1) § N
sample points in each direction, the order of mattibecomes 9 1 A Picture of (21) form <.
6-200% = 4.8-107 = O(107).

Theorem 1:Let B1v; = Q. After m steps of the modified
lll. A M ODIFIED LANCZOS ALGORITHM Lanczos algorithm we have

Since computing the field vectdr(t) [as given by (19)] AQ=pVpTler, §=0,1,2 -, m—-1 (22
is not practicable, we will construct so-called reduced-model . . . . .
approximations to this vector. These approximations are all Proof: [11]. The proof is by induction ovef. Forj = 0,
based on a modified Lanczos algorithm. This algorithm col’® have
structs a basis for a Krylov subspace of matrk with Q = BiVmer = oy (23)
respect to the source vectQr. The information present in this ] ) .
subspace is then used in the reduced-model approximati@hé§ Py the induction hypothesis we have that
for a continuum of time instances within a certain bounded AITIQ = AAIQ = BLAV, T e,
interval in time. In order to apply a Lanczos algorithm for — BV T 9 T\
constructing the approximations, we introduce the bilinear =PV /,’"l—i_/m*wm*lem) m®l
form (-, -y, = (M; 16—, -), where(-, -} denotes the standard =V T3 e (24)
inner product of two real vectors. From (14) to (16), itjncecT 7 e

e o . lhep =0forj <m-—2. [
then follows that matrix4 is symmetric with respect to this Note that the proo? of the theorem does not rely on the
bilinear form. Using this symmetry property,

: _ we can defing.,,4onality property of the Lanczos vectarswith respect
the following Lanczos algorithm based upon the three-terfg our bilinear form. Equation (21) and,v; = Q were the

recurrence relatiotlv; = 3;1viy1 + civ; + Bivi—1, namely, only two equations used in the proof of the theorem.

P =Q Now consider the computation of the vecfot + sE)~1@Q,
wi = Av; — Biviy with s > so and sy defined by
a; = (vi, wi)b so = max {|| 4|, |Tm|} (25)
Pit1vips =wi = aiv; where|| - || denotes the matrix two-norm. This vector can be

with vy = 0. (For more on the Lanczos algorithm see [8] angritten as
[9]). In each step/3; is determined from the condition that m—1l k 00 k
(vi, vi)p, = 1 for ¢ > 1. Implementation of this algorithm (A—i—sE)_lQ:l Z <—1A> Q+1 Z <—1A) Q
requires only twoN-vectors of storage. Moreover, since S s S =m V8
matrix A is sparse, the whole process is of ordér We can (26)

summarizem steps of the modified Lanczos algorithm as . ] ]
with s > so. With the aid of the last theorem, this can be

AVrn = VrnTrn + ﬁrn—l—lvrn-l—l efl (21) written as
where matrix V,,, has the column partitioningV,, = (A+ sE)_lQ
(Ul, Vo, e, Um) and T,, = trldlag (ﬁz, g, ﬁi—l—l) is a m—1 k oo k
i ; ; 1 1 1 1
tridiagonal complex symmetrien x m matrix. The vector =BV = Z <__Trn> el + = Z <——A> Q
em is themth column of them x m identity matrix £,,,. We S S S w— S
are interested in situations whewe is much smaller thaav, = BV (T + $Em)~ter + Ron(s) 27)

the order of the matrices occurring in (13) (see Fig. 1).

In Section IV, we show that by increasing the number dbr s > sg, and where the vectd%m(s) is given by
Lanczos steps, the reduced-model approximations converge to 0o k k
the field vectorF'(¢) on a finite time interval of observation. Ron(s) _1 Z [<_1 A) Q- /31Vn1<_1Tnl> 61]
This is not to be confused with propagation problems in the s s
frequency domain, where one wants to compute the square m 1 -
root of an operator using a Lanczos scheme [10]. =(-4) m (A+sE)"Q

k=m

m 1 —1
IV. THE REDUCED-MODEL APPROXIMATIONS = ALV (=Tm) E(T"’JFSE’") 1. (28)

As a consequence of our modified Lanczos algorithm, vilehe infinite series in (26)—(28) are convergent since-
have the following theorem. sg. Then, Lerch’s theorem states that there is a one-to-one
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correspondence with a causal time function. Via inspectioA, Computational Considerations

the causal time-domain counterpart of (27), is obtained as

X(t) eXp (_At)Q :X(t)ﬁlvrn exp (_Tnlt)el + an(t) (29)

where the vecto?,,,(t) is given by

exp [~ (t—7)F™ d’rcl} .
7=0

(30)
Substitution of (29) into (19) leads to
F(t) = Fp(t) + w(t) * My 'Ry, () (31)
where we have defined the reduced mo#gl(¢) as
F,.(t) = w(t) * x(t )/31M2 Vin exp(=Tint)e; (32)

The reduced-model approximation is computed as follows.
From Appendix A, we know that in the lossless case, matrix
T is diagonalizable. Now lef},,S,, = S»©,. denote the
eigenvalue problem for matrig;,, then the expression for
F,,(t) can be written as

Frn(t) = w(t) » BLM; VS exp (=Ot)ST e (36)
This expression is computed for field quantities in the observa-
tion points of interest. This means that only rows of matfjx
which correspond to these field quantities are kept in memory.
Note that solving the eigenvalue problem for matfix, can
be done by standard eigenvalue problem routines, simie
very small, especially compared f§ and, moreover, matrix
T,, is tridiagonal and symmetric. Also note the important role
that the first components of the eigenvectors of makyixplay
in forming the reduced-model approximation.

When losses are involved, we no longempriori know if
matrix 1, is diagonalizable. Instead, we then assume that it
is diagonalizable. We do mention that in all of our present
numerical work, we have never detected a case where matrix
T.» was not diagonalizable. Also, from the characteristic
polynomial of matrix7;,, it is observed that all eigenvalues

In Appendix B, it is shown that this reduced model is reaRf matrix 7}, are either real or occur in complex conjugate
valued. The reduced modédf,,(t) is now taken as an ap-Pairs. The same is true for the eigenvalues of mattix
proximation to the vectof(¢) on a certain bounded intervalMoreover, it is easily seen that all eigenvalues of mattix

(0, tops]- TO see how good this approximation is, we considdélave a nonnegative real part. However, this can not be said

the two-norm of the vectoR,,,(t) as a function ot for ¢ > 0.
First of all, it is observed that since < 7 < ¢ in (30),
we have

[exp [-A(t — 7)]l| < exp[||A|(t — )] < exp(||All£) (33)
and the same inequality is true if we replace matrixby

matrix 7,,. Taking the two-norm of the vectoR,,(¢) and
using the result of (33) leads to

180l < 121 T e L
Y ||vm||w exp (ITllt)  (34)
and form — oo this can be written as
IRt < ||Q||<”A”“) exp (141l
1l () e izl (39)

where we have used Stirling’s formula fau!. We observe
that || R,..(¢)|| becomes negligible as soon@s> tesy, where
so is given by (25), under the assumption thgt,, || does

of the eigenvalues of matri¥;,, i.e., it may happen that
some eigenvalues of matri¥,, have a negative real part.
These eigenvalues are obviously located at the wrong half
of the complex plane. This phenomenon occurs only when
losses are involved. In the lossless case, we have a standard
Lanczos algorithm which is known to produce stable results
[12]. In our numerical tests, we further have observed the fact
that for eigenvalues of matri¥;,, with a substantial negative
real part, the absolute value of the first component of its
corresponding eigenvector becomes negligible. The larger the
absolute value of the negative real part of an eigenvalue is,
the smaller the absolute value of the first component of its
corresponding eigenvector. Our approach is, therefore, to shift
all eigenvalues with a negative real part onto the imaginary
axis. This has the effect that eigenvalues with a substantial
negative real part do not contribute to the reduced-model
approximation as is indicated by the algorithm by means of
a vanishing first component of its corresponding eigenvector.
From the numerical results we have observed that the error of
this approach, if any, falls below the discretization error.
Since our Lanczos algorithm employs a bilinear form and
not an inner product, it may happen that; = 0 even when
w; — a1y 7 0. The algorithm cannot continue in such a case.
This is called breakdown of the algorithm. In particular, there
exist source vector§ for which 5; = 0 and so it is not even
possible to start the iteration process for such source vectors.

not become too large. In order to have reliable results on themust be said, however, that these source vectors always

interval of observatiofi0, to},s], We must have,,s < m/(eso)

consist of a part due to external electric-current sources and a

showing that the length of this interval is linearly related tpart due to external magnetic-current sources. Carrying out the

the number of Lanczos steps.

modified Lanczos algorithm with such a source vector would
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imply that we are interested in the situation where we have so
two different kinds of external sources, one electric the other 4o}
magnetic, but with the same source wavelét). Obviously, 30}
this is a rather exceptional situation. Nevertheless, if one is ,,|
interested in the response due to such a source setup, one, |
first computes the response due to the external electric-current
sources, then one computes the response due to the external
magnetic-current sources and finally one uses the superpositioﬁlo’
principle. Such an approach is possible due to the linearity ~°|
of the problem and because of the fact that a source vector°[
with an external electric-current part only, or with an external —#°f \ v \,
magnetic-current part only, can not result ifa= 0; i.e., we =505 20
can always start. Furthermore, in Appendix A, it is shown that

in case of a lossless medium and a source vector with either @
an electric-current part or a magnetic-current part, breakdown so
of the algorithm does not occur. Although in our present 4o
numerical work we have never detected a breakdown of the 5,
algorithm in case of lossy media, presently we are not able to |
prove that in the lossy case, theoretically no breakdown occurs.

40 60 80 100 120 140 160

10|

0

V. NUMERICAL RESULTS _1ol

We have implemented the reduced-model technique for 2-D 2o}
E- or H-polarized waves in inhomogeneous, isotropic, and —sof
lossy media. The configuration is invariant in the-direction a0l
and thezs-direction is chosen downwardly. The presented .,
results are all for the case df-polarization (electric field
strength F; parallel to the invariance direction), except for (b)
the last example where, for completeness, the caséf-of w©
polarization is given as well. In all examples the source vector
is of the electric-current type, i.e., the source vecdmsatisfies 7
Q = 6FQ. The source wavelet is taken to be a Ricker wavelet
and is given by 201

10

W) = x(0)) 55 3¢ P[0 -7 @)

—10F

20 40 60 80 100 120 140 160

m=300
301

With the parametety, we can shift the nonzero part of the 201
wavelet in time and by varying the parametewe can vary -30¢
the peak frequency of this wavelet. In all exampkeis chosen —40}
such that this frequency is 40 MHz. We employ a uniform _so
mesh with a meshwidth such that we have about 34 paints/
where A is the free-space wavelength corresponding to the
peak frequency of 40 MHz. For this mesh, the ordérof

matrix A amounts to 189 000. (c)

As a first example, we consider the electric-field strengthy. 2. Electric field strengthE> as a function of time as measured by
E, = EQ(.’IZ’l, x3, t) in a vacuum domain generated by arthe receiver in a vacuum domain. The solid line signifies the exact result.
external electric-current source of the typg(z1, 3, t) =0,
J5(x1, x3, t) = w(t)d(x1, x3), J5(z1, 23, t) = 0. For this
particular example, the electric-field strength is known in
closed form as approximation, the delta functiof(x;, x3) is approximated
by a 2-D triangular distribution. The expression fBs [as

20 40 60 80 100 120 140 160

time [ns} —

iterations, (b) after 200 iterations, and (c) after 300 iterations.

The dashed line is the reduced-model approximation (a) after 100 Lanczos

0, St — b<T given by (38)] is, therefore, weighted over this distribution. For
Ey(zy, 23, t) =4 _Ho Gt —1) t>T i i
o == > an observation point located 4.84 m from the source, we then
=TV -

where T

(38) obtain the result as given by the solid line in Fig. 2. The dashed
(2 + 22)Y% /¢y is the arrival time for the line in Fig. 2(a) is the reduced-model approximation after 100

wave to travel from the source location to the observatidinczos steps, in Fig. 2(b) after 200 Lanczos steps, and in
point, ¢y is the electromagnetic-wave speed in vacuum arkdg. 2(c) after 300 Lanczos steps. We observe that the length
1o IS the permeability of vacuum. In our finite-differenceof the interval in which the reduced-model approximation and
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e =1 20

source receiver 10 '

|
v
1
— !
|
|
T
1

o = 0.003S/m 1T

Fig. 3. Source and receiver located at the interface of a lossy half-space.—201
The distance between the source and the receiver is 4.84 m.

—30

the exact result overlap, increases with the number of Lanczos , ‘ , ) ) , ,
StepS. o] 20 40 60 80 100 120 140 160
As a second example, we consider the same source-receiver @)
setup, but now located at the interface of a lossy half-space
(see Fig. 3). The solid line in Fig. 4 is the result obtained after 4
650 Lanczos steps. The dashed line in Fig. 4(a) is the result ,|
after 200 Lanczos steps, in Fig. 4(b) after 400 Lanczos steps,
and in Fig. 4(c) after 600 Lanczos steps. Note the different
scale in Fig. 4(a). Again, the same behavior as in the previous 1}
example is observed. However, it takes more Lanczos steps to
get an accurate approximation on the same time interval when
compared to the case of a vacuum domain. -ir
As a third example, we show the results obtained when 2}
an object is present in the lossy half-space (see Fig. 5). |
The source and receiver are symmetrically located above the
object. The configuration shown in Fig. 5 is similar to the % 20 40 60 80 100 120 140 160
3-D configuration as taken by Wang and Tripp [13]. The solid (b)
line in Fig. 6 is the result obtained after 650 Lanczos steps and
the dashed lines show the reduced-model approximations after ,
200 Lanczos steps [Fig. 6(a)], 400 Lanczos steps [Fig. 6(b)],
and 600 Lanczos steps [Fig. 6(c)]. Note the different scale 3[
in Fig. 6(a). The presence of the buried object is clearly =
seen in the time interval 70-160 ns. In Fig. 7, we show
the results for the configuration of Fig. 5 in case Hf-
polarized waves excited by an external electric-current source ©
of the typle(a:l, xs3, t) = w(t)é(a:l, 373), J;(a?l, xs3, t) =0, -1+
Jg(xl, T3, t) = 0.

2+

m=600

1}

-2

-3

B. Comparison with the FDTD Method
4

Consider again, the configuration of Fig. 5. In Fig. 8, we "o 20 40 60 8 100 120 140 160
repeat (for the case df-polarization), the result obtained by
the modified Lanczos algorithm after 650 Lanczos steps (solid time [ns] —
line) and we show the result obtained via the FDTD method (©
using the sgme un'form. meSh_m space as in the reduc%%'. 4. Electric-field strengttE, as a function of time as measured by the
model technique and using a time step&f = Az/(2cy)  receiver in the configuration of Fig. 3. The solid line is the reduced-model
(dashed line). The results show a good overall agreemetproximation afer 650 Lanczos steps. The ashed fine is the reduced-mode
but the FDTD result deviates slightly from the reduced-mod D er 600 Lf;zcaz‘oz steps. anczos steps, (b) afte anczos steps, a
approximation. To study this deviation a bit further, we have
plotted the reduced-model approximation and the FDTD result
in more detail for time steps o\t = Ax/(v/2¢), At = ) ) )
Az/(2¢o), and At = Ax/(4co) from aboutt = 70 ns up to the source. Fig. 10(a) shows the FDTD result with a time
# = 80 ns in Fig. 9. We see that by decreasing the time step, P 0f At = Az/(2¢) in case of a vacuum domain. If
FDTD result converges to the reduced-model approximatiof¢ Now take the same source-receiver setup and the same
For a time step of\t = Axz/(8co), the FDTD result and the Spatial and temporal discretization in a homogeneous and
reduced-model approximation completely coincide. lossy medium ofs = 4 S/m, we get the FDTD result, as
As a second comparison, we consider the same source ashiawn in Fig. 10(b). The numerical dispersion due to the
the previous examples and a receiver located 0.44 m frdaime discretization is clearly observed. Using a time step of
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e =1 40 . . - -
source receiver o=0 3or :' I‘. m=200

& = 5 :
o =0.003S/m ] Vo
e =20 \ !

—20t - 1
o =0.003S/m o
30 ! !
Fig. 5. Source and receiver located at the interface of a lossy half-space with i
a buried object of 0.88 nx 1.98 m. The distance between the source and the —40r N

receiver is 4.84 m. The top of the object is located 1.98 m below the interface. _sq . . . . . . J
[4] 20 40 60 80 100 120 140 160
At = Azx/(4co) gives the result as shown by the solid line in
Fig. 10(c). From these results, we observe that the dispersion
effect disappears if the time step is chosen sufficiently small. 3}
Also shown in Fig. 10(c) is the reduced model obtained after
six Lanczos steps (dashed line) and after 12 Lanczos steps
(solid line). The reduced model obtained after 12 Lanczos steps '
completely coincides with the FDTD result using a time step o
of At = Az/(4co). From this result, we conclude that after |
only 12 steps, the reduced model is already accurate for this
configuration. From a computational point of view, one step ~2f
of the FDTD method is approximately equal to one step of _s
the modified Lanczos algorithm and so, especially in this last

4

2k

. . . -4 . . . ; . . .
example, the computational savings can be substantial when © 20 40 60 80 100 120 140 160
the reduced-model technique is being used. (b)
4
VI. CONCLUSIONS 3l

In this paper, we have presented a new method for com- ,|
puting transient electromagnetic wavefields in inhomogeneous
media. The cornerstone of the method is a so-called reduced '|
model that gives an accurate representation of the transient ©
electromagnetic-wave field on a certain bounded interval in _,|
time. The length of this interval can be extended by performing
more steps of the underlying Lanczos algorithm. One of the ~
characteristics of the method is that it is not an explicit time- -3}
stepping method and, therefore, errors introduced due to the _,| ) ) . ) , )
discretization of the time variable are not observed. 0 2040 60 8 100 120 140 160

Although we have presented the numerical results for 2-D
configurations, the theory applies to the 3-D case as well.
Future work will concentrate on this 3-D case as well as on the (c)
implementation of absorbing-boundary conditions. The onkig. 6. Electric-field strengthE» as a function of time as measured by

candidates that can be used in this method are the absorbifig-eceiver in the configuration of Fig. 5. Solid line is the reduced-model
roximation after 650 Lanczos steps. Dashed line is the reduced-model

. . . P
bound{;\ry condltlons baseq on the phySICS of the prOblem’ eg‘proximation (a) after 200 Lanczos steps, (b) after 400 Lanczos steps, and
the anisotropic absorbers introduced by Saekal. [14] and (c) after 600 Lanczos steps (c).

the absorbers as proposed by Ziolkowski [15].

The reduced model is constructed by employing the method
of Lanczos. This is a Krylov subspace method and the con-
vergence rate of such methods can be accelerated by usinglere we study the behavior of the modified Lanczos algo-
suitable preconditioning techniques. In our case of computifighm in case of a lossless medium.
transient electromagnetic-wave fields, we can use techniqueset us define, in addition to the signature matéix, the
similar to the ones presented in [16]. Although the reduceiglentity matrix §* and the matrice$* and 6 as
model technique is a reasonable efficient method in itself, it
is to be expected that these preconditioning techniques will
dramatically improve the convergence rate of the modified 6t =diag(1,1,1,1, 1, 1), (39)
Lanczos algorithm. §F =1 (6T +67) =diag(l, 1,1, 0,0, 0) (40)

2+

time [ns] —
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Fig. 8. Electric-field strengttis as a function of time as measured by the
receiver in the configuration of Fig. 5. The solid line is the reduced-model
approximation after 650 Lanczos steps. The dashed line is the FDTD result
with a time step ofAt = Axz/(2¢c).

0.02

0.01

Equations (42) and (43) show that whProperates on a vector

proportional to the electric-field strength, a vector proportional

to the magnetic-field strength results, and vice versa. This can

also be seen from the block off-diagonal structure of mafrix
Other useful relations are

—0.01

-0.02

-0.03

—-0.04
—0.05; 20 20 60 80 100 120 140 160 5m6% =6" (44)
(b) 660 =—§H, (45)
0.03 ' ' ; - ' : ' The discrete versions ¢ andé*” are also denoted by# and
0.02 67 . Equations (42)—(45) each have their discrete counterpart.
vol Apart from the relations already mentioned, we also use the
' relations
0
» My 6E =6 Myt (46)
' and
—0.02
M6 =61 Mt (47)
—0.03
o4 These equations follow from the fact that mathik commutes
with the matrice$y” andé*. We have the following theorem,
—00% 20 40 60 80 100 120 140 160 in which Z denotes the imaginary axis, characterizing the
modified Lanczos algorithm in case of a lossless medium.
time [ns] — Theorem 2: If the real-valued source vect@ satisfies) =
© 6FQ, i.e., no external magnetic-current sources are present,

Fig. 7. Magnetic-field strength/> as a function of time as measured by thethen the coefficients of the modified Lanczos algorithm satisfy

receiver in the configuration of Fig. 5. The solid line is the reduced-model _ L 48
approximation after 650 Lanczos steps. The dashed line is the reduced-model a; =0, 1=1,2,.-- ( )
approximation (a) after 200 Lanczos steps, (b) after 400 Lanczos steps, and 3. ¢ 7T\ {0 i=23 ... 49
(c) after 600 Lanczos steps. fi € \{ }’ » (49)

and the Lanczos vectors generated by this algorithm satisfy

and o 8Fvy;,  a real-valued vector whehis odd
§H =1 (6% —57) =diag(0,0,0,1,1,1). (41) 167w, animaginary-valued vector wheris e\Egg)
From (8) and the fact that the identity matd® commutes Furthermore, breakdown of the algorithm cannot occur.
with matrix D, it follows that Proof: From the conditior{vy, v1);, = 1, we have
D" =§"D 42) (o, vy =A7HQ, Q= BTHMH67Q, Q)
and =073 My 6767Q, Q) = pr(M51Q, Q) =1

D& = 65D, (43) (51)
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Fig. 9. Detail of the electric-field strengfy of Fig. 8. The solid line is the
reduced-model approximation after 650 Lanczos steps. The dashed line is

FDTD result with a time step of (@t = Ax/(v/2¢p), (b) At = Aw/(2¢0),
and (c)At = Ax/(4co).
and so

A= (M;'Q, Q) >0 (52)

showing thaf3; is real and not equal to zero. From the relation
Bivp = Q it follows that the vectory; is real-valued and
satisfiesr; = §%v;. The rest of the proof follows by induction

over i.

2147
150 . . . ,
100} .
sof .
0
-~50F -
oc=05/m
At = Az /(2¢)
100 . . . . . . .
() 20 40 60 80 100 120 140 160
@)
c=485/m
35 At = Az/(2¢) |
o 20 0 60 80 100 120 140 160
(b)
—3F
oc=4S/m
—3.5r At = Az /(4co) T
o 20 40 60 80 100 120 140 160

time [ns] —
©

Ftlrée 10. Electric-field strengtt> as a function of time as measured by
the receiver in a homogeneous space. (a) FDTD result with a time step of
At = Axz/(2co) in case of a vacuum domain. (b) FDTD result in case
o = 4 S/m using the same time step. (c) FDTD result (solid line) with a
time step of At = Ax/(4c¢o) and the reduced-model approximation after
six Lanczos steps (dashed line). The reduced-model approximation after 12
Lanczos steps coincides with the FDTD result.

For i = 1 we have

a1 = {vr, wihp = (v, DM5
= (M5 67 v, DMy o) = (My 1665w, DMy vy)
=(M; v, DMy o) =0 (53)
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since D is skew—symmetric. This leaves us with

/321}2 =w; = DM2_1121 = DMQ_I(SEvl
IéHDMQ_IZq == 6le.

= D§E My,
(54)

The vectorw, is a real-valued vector satisfying, = §7w;.
From the condition{vs, v2), = 1, we have

(v2, va) = B3 2wy, wiy, = By H(My 67wy, wi)

=~y H(My ", wi) = 1 (55)
and so
(32 = —(My  wy, w) <0 for a nonzeraw; . (56)

This shows that3, € 7\ {0}. Sincevs = 35 w1, vy is an
imaginary-valued vector satisfying, = 67 vs.

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 45, NO. 12, DECEMBER 1997

This shows tha; 11 € T\ {0}. Sincewviy1 = Bl wi, vig1
is a real-valued vector satisfying,; = §¥v; ;. Finally,

i1 = (Vig1, wig1) = (Mg vigr, DM i) = 0. (63)

Note that(M, w;, w;) for real- or imaginary-valued vec-
tors, w; can be zero if and only ifw; = 0. The modified
Lanczos algorithm cannot break down in the lossless case if
the real-valued source vector satisfigs= §¥Q m.

One can prove a similar result if the source vector satisfies
Q = 67Q, i.e., no external electric-current sources are present.
The theorem shows us that in the lossless case and in case there
are no external magnetic-current sources, the odd numbered
Lanczos vectors built up the approximation to the electric-
field strength and the even-numbered Lanczos vectors built
up the approximation to the magnetic-field strength. It is

Assume that is odd. Then, by the induction hypothesis@lso observed that in the lossless case, mafjixis always

v; is a real-valued vector satisfying = 6Fv;, v;_1 is an
imaginary-valued vector satisfying;_1 = 6%v;_1, 3; is
imaginary and not equal to zero angd = 0. We now have
— Bivi—1

— Bi6M vy

— B vy

- ﬁﬂji_l) = (5sz

Bit1vigr =w; = DMy
=DMy 65y,
= D" Myt

=61 (DM (57)

The vectorw; is a real-valued vector satisfying; = 67 w;.
From the condition thatv; 11, v;4+1), = 1, we have

(Vit1, vig1)b = Biia (wi, wiy = B (My 67 wi, wy)
2_1(5_(5Hwi, wz>

:/;1—21 (M.

= =B A (M5 wi, w) = 1 (58)

and so
/31‘2-1-1 =

This shows that3;1; € T\ {0}. Sincewviy; = 8w,
v;41 IS @n imaginary-valued vector satisfying, 1 = 67 v; ;.
Further,

— (M3 w;, w;) < 0 for a nonzerow;. (59)

iyl = (%4—1, Wit 1) = (Vit1, DMy i1,
= (M3 167 vig1, DMy vig)

—<M2 Vi4+1, DM2 Ui+1> =0. (60)

diagonalizable. Further, the eigenvalues of the mafridd; *

are all imaginary, and the same is true for the elgenvalues
of matrix 7,,. In fact, in the lossless case, one can use
the standard Lanczos algorithm for skew-symmetric matrices
to construct the reduced-model approximation. Our modified
Lanczos algorithm reduces to a variant of this standard Lanc-
zos scheme in case of a lossless medium.

APPENDIX B

In order to show that the reduced-model approximation is a
real quantity, we will use the result that the, as generated
by the modified Lanczos algorithm, are all real and that the
3; and the corresponding Lanczos vectoysre either real or
imaginary. We state this result as a theorem.

Theorem 3: The coefficients generated by the modified
Lanczos algorithm satisfy

a; € IR, 1=1,2, .-

Bi —1/ %,%GIR 7, = %1,
Ti

and the corresponding Lanczos vectors are of the form
Uz:\/FizivzielR'Nv L:]-v 27 Tt (66)

Proof: Let us write 3, = ~i/\/71, then v; =
(v/T1/71)Q. From the condition{v;, v1);, = 1 it follows
thaty{ = 71(Q, Q). Setry = sign((Q, Q)y,) then~, € R

(64)

i=23 (65)

As a next step, we assume thatis even. Then, by andvi = /712 with z; = Q/v; € R™. Obviously, we have

the induction hypothesisy; is an imaginary-valued vector @1 € IR. The rest of the proof follows by induction over
satisfyingv; = 6%v;, v;_; is a real-valued vector satisfying The Lanczos algorithm is based on the three-term recurrence

vi—1 = 6Fv;_1, B; is imaginary and not equal to zero andelation

«; = 0. We now have Avi = Big1vig1 + qivi + Bivies (67)
s —aps — 1, .
Piavipr =wi = DM; ;= fivizy and for: = 1 it follows from this relation that
= DMQ_I(SHUZ‘ - /3i5Evi_1
=88 (DMy v — Proicy) = §%wi. (61) Pava = /T (68)
with 7; = (A—a 1 E)z; € RY. Letus writefy = /(71 /72)72

The vectorw; is an imaginary-valued vector satisfying =
6EFaw;. From the condition thatv;,, viy1), = 1 it follows
that

B =

thenwvy, = (\/72/v2)r1 and it follows from the condition that
(v, va)p, = 1 thaty2 = 7o (ry, 71 )p,. Setry = Sign((n, 71>b)
theny, € R, vy = \/EZQ with zo = 71/’)/2 e R and
for a nonzerow;. as € R.

(M{lwi, wz> < 0, (62)
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From (67) and by the induction hypothesis, we have

Bit1Vig1 = /Tl (69)

(7]

(8]
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conjugation. From the above theorem it follows that matrix

T,., as given in (21), can be written as

Trn = 7rnHrnJrn (72)

[16]

where matrixH,, is a real, tridiagonal, and nonsymmetric

matrix given by H,,, = tridiag (r;—17:%, o, vit1). Matrix

H,, is called a sign-symmetric matrix or pseudo-symmetric

matrix, since J2 H,, is a symmetric matrix and/2, is a
signature matrix. From (72), it follows that

TF =T, H* J, k=0,1,---. (73)

It is now easily proved that the reduced-model approximatic

is a real quantity. We will give the proof in thedomain, but

it can just as easily be given in the time domain. The reduc

model approximation in the-domain fors real ands > s,
with so given in (25), can be written as
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expression forﬁm(s) is real for s real ands > sg and,
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